APPLICATION OF DERIVATIVES

BASIC CONCEPTS

1. Tangents and Normals:

Equation of tangent to the curve y = f(x) at the point (x_1, y_1) is given by

$$(y - y_1) = \left(\frac{dy}{dx}\right)_{(x_1, y_1)} (x - x_1)$$

Equation of normal to the curve y = f(x) at $P(x_1, y_1)$ is

$$(y - y_1) = \frac{-1}{\left[\frac{dy}{dx}\right]_{(x_1, y_1)}} (x - x_1)$$

2. Increasing Function: A function f(x) is said to be an increasing function in (a, b) if

$$x_1 < x_2 \implies f(x_1) \le f(x_2) \quad \forall \ x_1, x_2 \in (a, b)$$

3. Decreasing Function: A function f(x) is said to be decreasing in the interval (a, b) if

$$x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2) \quad \forall \ x_1, x_2 \in (a, b)$$

4. Maximum and Minimum Value of a Function

(or Absolute Maximum or Minimum Value)

A function f is said to attain maximum value at a point $a \in D_f$, if $f(a) \ge f(x) \quad \forall \ x \in D_f$ then f(a) is called absolute maximum value of f.

A function f attains minimum value at $x = b \in D_f$, if $f(b) \le f(x) \ \forall \ x \in D_f$ then f(b) is called absolute minimum value of f.

5. Local Maxima and Local Minima (or Relative Extrema)

Local Maxima: A function f(x) is said to attain a local maxima at x = a, if there exists a neighbourhood $(a - \delta, a + \delta)$ of 'a' such that $f(x) < f(a) \ \forall \ x \in (a - \delta, a + \delta)$, $x \ne a$, then f(a) is the local maximum value of f(x) at x = a.

Local Minima: A function f(x) is said to attain a local minima at x = a, if there exists a neighbourhood $(a - \delta, a + \delta)$ of 'a' such that $f(x) > f(a) \ \forall \ x \in (a - \delta, a + \delta)$, $x \ne a$, then f(a) is called the local minimum value at x = a.

6. Test for Identifying Relative (Local) Maxima or Minima

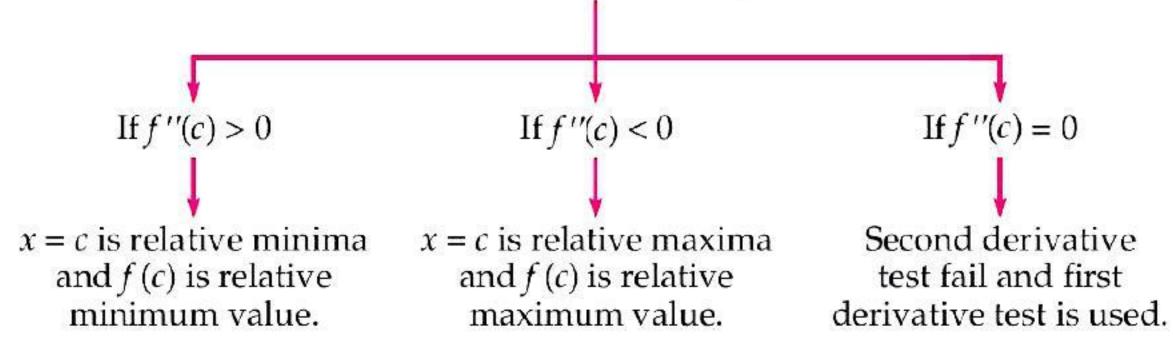
(i) First Derivative Test

Step I: Find f'(x)

Step II: The equation f'(x) = 0 is solved to get critical points $x = c_1, c_2, \dots, c_n$.

Step III: The sign of f'(x) is studied in the neighbourhood of each critical points.

Let one critical point be x = c. If the sign of f'(x) changes If the sign of f'(x) changes from +ve to –ve as x increases from –ve to +ve as x increases through *c* (from left to right of *c*). through c (from left to right of c). x = c is relative maxima and x = c is relative minima and f(c) is relative maximum value. f(c) is relative minimum value.


(ii) Second order derivative test

Step I: Find f'(x) = 0.

Step II: The equation f'(x) = 0 is solved to get critical points $x = c_1, c_2, \dots, c_n$.

Step III: f''(x) is obtained and the sign of f''(x) is studied for all critical points $x = c_1, c_2, \dots, c_n$.

Let x = c be one critical point.

- 7. Critical point: A point x = c is called critical point of the function f(x), if f(c) exists and either f'(c) = 0or $f'(c) = \infty$ (does not exist).
- **8. Point of Inflexion:** If f(x) is a function and x = c is critical point, then x = c is called point of inflexion if

$$(i) \ f'(c) = 0$$

(i)
$$f'(c) = 0$$
 (ii) $f''(c) = 0$ (iii) $f'''(c) \neq 0$

(iii)
$$f'''(c) \neq 0$$

MULTIPLE CHOICE QUESTIONS

Choose and write the correct option in the following questions.

1. The interval in which the function f given by $f(x) = x^2 e^{-x}$ is strictly increasing, is [CBSE 2020 (65/2/1)]

 $(a) \ (-\infty, \infty) \qquad \qquad (b) \ (-\infty, 0) \qquad \qquad (c) \ (2, \infty)$

(b)
$$(-\infty, 0)$$

$$(c)$$
 $(2, \infty)$

2. The abscissa of the point on the curve $3y = 6x - 5x^3$, the normal at which passes through origin is

(a) 1

(b)
$$\frac{1}{3}$$

(c) 2

(d)
$$\frac{1}{2}$$

3. $f(x) = x^x$ has a stationary point at

(a)
$$x = e$$
 (b) $x = \frac{1}{e}$ (c) $x = 1$ (d) $x = \sqrt{e}$

(d)
$$x = \sqrt{e}$$

4. The two curves $x^3 - 3xy^2 + 2 = 0$ and $3x^2y - y^3 = 2$

[NCERT Exemplar]

(a) touch each other

(b) cut at right angle

(c) cut at an angle $\frac{\pi}{3}$

- (d) cut at an angle $\frac{\pi}{4}$
- 5. The slope of normal to the curve $y = 2x^2 + 3 \sin x$ at x = 0 is

(a) 3

- (c) -3
- $(d) \frac{1}{3}$
- 6. The equation of the normal to the curve $y = \sin x$ at (0, 0) is

(a) x = 0

- (b) y = 0
- (c) x + y = 0
- (d) x y = 0

146 Mathematics—XII: Term-1

7.	The tangent to the curve $y = e^{2x}$ at the point (0, 1) meets x-axis at				
	(a) (0, 1)	(b) (0, 2)	(c) $\left(-\frac{1}{2},0\right)$	(<i>d</i>) (2, 0)	
8.		tangent to the curve y2			
	(a) (1, 2)	(b) (2, 1)	A. C. C. S.	(d) (-1, 2)	
9.		$x^2 = 2y$ which is neare	A second section of the second		
		(b) $(2\sqrt{2},0)$		(d) $(2,2)$	
10.	The slope of tangent	to the curve $x = t^2 + 3t$	$-8, y = 2t^2 - 2t - 5$ at t	he point (2, –1) is	
	(a) $\frac{22}{7}$	(b) $\frac{6}{7}$	•	(d) $\frac{-6}{7}$	
11.	The greatest of the nu	umbers 1, 2 ^{1/2} , 3 ^{1/3} , 4 ^{1/4} , 5	$^{1/5}$, $6^{1/6}$ and $7^{1/7}$, is		
	(a) $2^{1/2}$	(b) $3^{1/3}$	(c) $4^{1/4}$	(d) $7^{1/7}$	
12.	The minimum value	of x^x $(x > 0)$ is	e P		
	(a) 1	(b) $e^{-1/e}$	(c) $\left(\frac{1}{e}\right)^{c}$	(d) none of these	
13.		$hich y = x^2 + ax + 25 tou$			
	(a) 0	(b) ± 10	(c) 4, -6	$(d) \pm 5$	
14.		then its maximum value	e is		
	(a 0		(b) $\frac{4}{3}$		
	(c) ± 5		(d) Maximum value	does not exist.	
15.	The function $f(x) = t$	$an^{-1}(\sin x + \cos x)$ is an i	increasing function in		
	(a) $\left(0,\frac{\pi}{2}\right)$	(b) $\left(-\frac{\pi}{2},\frac{\pi}{4}\right)$	(c) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$	(d) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	
16.	Let the $f: R \to R$ be defined by $f(x) = 2x + \cos x$, then f				
	(a) has a maximum, a	at $x = 0$	(b) has a minimum, a	at $x = \pi$	
	(c) is an increasing function (d) is a decreasing function				
17.	At $x = \frac{5\pi}{6}$, $f(x) = 2 \sin^2 \theta$	$n 3x + 3 \cos 3x$ is			
	(a) 0	(b) minimum	(c) maximum	(d) none of these	
18.	At $(0, 0)$ the curve $y =$	$x^{1/2}$ has a			
	(a) a horizontal tange	ent parallel to x-axis	(b) a vertical tangent	parallel to y-axis	
	(c) an oblique tangent		(d) tangent does not exist.		
19.	If the tangent at (a, b equal to) to the curve $x^3 + y^3 = c$	3 meets the curve again	in in (a_1, b_1) then $\frac{a_1}{a} + \frac{b_1}{b}$ is	
	(a) 1	(b) -1	(c) c	$(d) \frac{c}{2}$	
20.	The point of intersect met by the curve xy =		n to the curve $x^2y = 1$	-y at the points where it is	
	(a) $(0, -1)$	(b) $(1,1)$	(c) $(0,1)$	(d) (-1, 0)	
21.		hich the function $f(x) = x$	$\sin x - ax + b$ increase	AC STON BY SE SAND	
		(b) [-1, 1]	(c) $(-\infty, -1)$	(d) none of these	
22.	The function $f(x) = \frac{1}{x^2}$	$\frac{2x^2 - 1}{x^4}, x > 0, \text{ decreases}$	in the interval		
	(a) $(-\infty, 0)$	(b) $[1,\infty)$	(c) $[-1, -1]$	(d) none of these	
			A	action of Darivativas 11/7	

		L			
23.	The least value of the function $f(x) = ax + \frac{b}{x}(a > 0, b > 0, x > 0)$ is				
	(a) $\frac{a}{b}$	(b) $2\sqrt{ab}$	(c) 0	(d) none of these	
24.	The condition that th	e curve $ax^2 + by^2 = 1$ and	$d a_1 x^2 + b_1 y^2 = 1 \text{ may c}$	ut each other orthogonally	
	is				
	(a) $a_1 + a = b_1 + b$		(b) $a_1 - a = b_1 - b$		
	(c) $\frac{1}{a_1} - \frac{1}{a} = \frac{1}{b_1} - \frac{1}{b}$		(d) $\frac{1}{a_1} + \frac{1}{a} = \frac{1}{b_1} + \frac{1}{b}$		
25.		tangent to the curve e^y =			
	DI NO RE RE	(b) $m < 1$		(d) $ m \leq 1$	
26.	If at each point of the curve $y = x^3 - ax^2 + x + 1$ the tangent is inclined at an acute angle with positive direction of the x-axis then				
	10 1 10 10 10 10 10 10 10 10 10 10 10 10	(b) $a \leq \sqrt{3}$	ALCONOMICS CONTRACTOR CONTRACTOR	ACCUPATION OF THE SECOND CONTRACTOR OF THE SEC	
27.	Slope of tangent to the quadrant is	e curve $y = x^2 - x$ at the p	oint where the line y =	2 cuts the curve in the first	
	(a) 2	(<i>b</i>) 3	(c) - 3	(d) None of these	
28.	The slope of the tang	ent of the locus $y = \cos^{-1}$	$(\cos x)$ at $x = -\frac{\pi}{4}$ is		
	(a) 1	(b) 0	(c) 2	(d) - 1	
29.		$x^2 + ax + b \text{ and } y = x(c)$			
	Desire San San San San	(b) b = 1		(d) b = -2	
30.	30. Let $y = f(x)$ be the equation of parabola having its axis parallel to y axis, which is line $y = x$ at the point where $x = 1$. Then				
	(a) $f'(0) = f'(1)$		(b) $f'(1) = 0$		
	(c) $f(0) + f'(0) + f''(0)$	$\mathbf{i} = 1$	(d) $2f(0) = 1 - f'(0)$		
31.	A point on the ellipse $4x^2 + 9y^2 = 36$ where the tangent is equally inclined to the axis is				
	(a) $\left(\frac{9}{\sqrt{13}}, \frac{4}{\sqrt{13}}\right)$	(b) $\left(-\frac{9}{\sqrt{13}}, \frac{4}{\sqrt{13}}\right)$	$(c) \left(\frac{9}{\sqrt{13}}, -\frac{4}{\sqrt{13}}\right)$	(d) All of these	
32.		$+c^2y$ where a, b and c a	re positive constants t	hen the minimum value of	
	S is (a) abc	(b) $bc\sqrt{a}$	(c) 2abc	(d) none of these	
22	The clobal minimum	value of $f(x) = x^4 - x^2 - x^2$	2v + 6 is	(a) Horie of these	
33.	111	value of $f(x) - x - x - x$	(1) 0		
	(c) 4		(d) does not exists		
0.4	The minimum value of $f(x) = 3 \cos^2 x + 4 \sin^2 x + \cos \frac{x}{2} + \sin \frac{x}{2}$ is				
34.					
		(b) $3 + \sqrt{2}$	67 58 W	(d) none of these	
35.		num value of a sec $\theta - b$			
		(b) $\sqrt{a^2 + b^2}$			
36.	# # #	82.012		x) attains its maximum is	
	(a) 0	(b) 1	(c) 2	(d) infinite	
		θ sin φ has a maximum			
	(a) $\frac{\pi}{6}$	(b) $\frac{2\pi}{3}$	(c) $\frac{\pi}{4}$	(d) none of these	

- 38. If $f(x) = a \log_e |x| + bx^2 + x$ has extremum at x = 1 and x = 3 then
 - (a) $a = -\frac{3}{4}$, $b = -\frac{1}{8}$ (b) $a = \frac{3}{4}$, $b = -\frac{1}{8}$ (c) $a = -\frac{3}{4}$, $b = \frac{1}{8}$ (d) None of these

- 39. Let f(x) be a function such that $f'(a) \neq 0$. Then at x = a, f(x)
 - (a) cannot have a maximum
 - (b) cannot have a minimum
 - (c) must have neither a maximum nor a minimum
 - (d) None of these
- The function $f(x) = \sin^4 x + \cos^4 x$ increases if

- (a) $0 < x < \frac{\pi}{8}$ (b) $\frac{\pi}{4} < x < \frac{3\pi}{8}$ (c) $\frac{3\pi}{4} < x < \frac{5\pi}{8}$ (d) $\frac{5\pi}{8} < x < \frac{3\pi}{4}$
- 41. If $f(x) = \frac{x}{\sin x}$ and $g(x) = \frac{x}{\tan x}$, where $0 < x \le 1$, then in the interval
 - (a) both f(x) and g(x) are increasing functions
 - (b) both f(x) and g(x) are decreasing functions
 - (c) f(x) is an increasing function.
 - (d) g(x) is an increasing function.
- 42. Let $h(x) = f(x) \{f(x)\}^2 + \{f(x)\}^3$ for all real values of x. Then
 - (a) h is increasing whenever f(x) is increasing
 - (b) h is increasing whenever f'(x) < 0
 - (c) *h* is decreasing whenever *f* is increasing
 - (d) nothing can be said in general
- 43. If $f(x) = \sin x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$, then
 - (a) f(x) is increasing in the interval $\left|-\frac{\pi}{2}, \frac{\pi}{2}\right|$
 - (b) $f\{f(x)\}\$ is increasing in the interval $\left|-\frac{\pi}{2}, \frac{\pi}{2}\right|$
 - (c) f(f(x)) is invertible in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
 - (d) All of these
- Let $f(x) = 2 \sin^3 x 3 \sin^2 x + 12 \sin x + 5$, $0 \le x \le \frac{\pi}{2}$. Then f(x) is
 - (a) decreasing in $\left[0, \frac{\pi}{2}\right]$
 - (b) increasing in $\left[0, \frac{\pi}{2}\right]$
 - (c) increasing in $\left[0, \frac{\pi}{4}\right]$ and decreasing in $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
 - (d) none of these
- Which of the following function is decreasing on $\left(0, \frac{\pi}{2}\right)$?
 - (a) $\tan 2x$
- (b) $\cos x$
- (c) $\cos 3x$
- (d) none of these
- The tangent to the curve given by $x = e^t$. cos t, $y = e^t$. sin t at $t = \frac{\pi}{4}$ makes with x-axis an angle:
 - (a) 0
- $(b) \frac{\pi}{4} \qquad \qquad (c) \frac{\pi}{3} \qquad \qquad (d) \frac{\pi}{2}$

		2			
47.	The equation of norm	nal to the curve $3x^2 - y^2 =$	= 8 which is parallel to	the line $x + 3y = 8$, is	
	(a) $3x - y = 8$	(b) $3x + y + 8 = 0$	(c) $x + 3y \pm 8 = 0$	(d) x + 3y = 0	
48.	The equation of tange	ent to the curve $y(1+x^2)$	= 2 - x, where it cros	ses x-axis, is	
	(a) x + 5y = 2	(b) $x - 5y = 2$	(c) 5x - y = 2	(d) 5x + y = 2	
49.	The interval on which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ is decreasing is				
	$(a) [-1, \infty)$	(b) $[-2, -1]$	(c) $(-\infty, -2]$	(d) $[-1, 1]$	
50.	The function $f(x) = 4 \sin^3 x - 6 \sin^2 x + 12 \sin x + 100$ is strictly				
	(a) Increasing in $\left(\pi, \frac{3\pi}{2}\right)$		(b) decreasing in $\binom{\pi}{2}$, π		
	(c) decreasing in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ (d) decreasing in $\left(0, \frac{\pi}{2}\right)$		$\frac{\pi}{2}$		
51.	The function $f(x) = tax$	n x - x			
	(a) always increases		(b) always decreases		
	(c) never increases				
	(d) sometimes increases and sometimes decreases				
52.	If x is real, then the minimum value of $x^2 - 8x + 17$ is				
	(a) -1	(b) 0	(c) 1	(d) 2	

4. The function $f(x) = 2x^3 - 3x^2 - 12x + 4$, has

(a) two points of local maximum

(b) two points of local minimum

(c) one maxima and one minima

(d) no maxima or minima

5. The maximum value of $\sin x \cdot \cos x$ is

(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\sqrt{2}$ (d) $2\sqrt{2}$

(c) 135

(d) 160

53. The smallest value of polynomial $x^3 - 18x^2 + 96x$ in [0, 9] is

(b) 0

56. The maximum slope of curve $y = -x^3 + 3x^2 + 9x - 27$ is

(a) 0 (b) 12 (c) 16 (d) 32

57. If x + y = 8 then the maximum value of xy is

(a) 8 (b) 16 (c) 20 (d) 24

58. Find the slope of normal line to the curve: $x^2 - xy + 3y^2 - 5y = 0$ at x = 2.

(a) $\left(\frac{13}{8}, 3\right)$ (b) $\left(\frac{3}{8}, \frac{-1}{3}\right)$ (c) $\left(\frac{-8}{3}, \frac{1}{3}\right)$ (d) $\left(\frac{8}{3}, 6\right)$

59. Find the point at which the normal to the curve: $y = 2x^2 - 2x + 7$ has a slope $\frac{1}{6}$.

(a) (-1, -11) (b) (1, -11) (c) (-1, 11) (d) (-1, -9)

60. Find the angle of intersection of the two curves $x^2y = 2$ and $xy^2 = 4$.

(a) $\tan^{-1}\frac{3}{5}$ (b) $\tan^{-1}3$ (c) $\tan^{-1}\frac{5}{3}$ (d) None of these

61. It is given that for the function f given by $f(x) = x^3 + bx^2 + ax$, $x \in [1, 3]$, then

(a) a = 11, b = -6 (b) a = -6, b = 11 (c) a = 6, b = 11 (d) None of these 62. The slope of the curve $2y^2 = ax^2 + b$ at (1, -1) is -1. Find a, b.

62. The slope of the curve $2y^2 = ax^2 + b$ at (1, -1) is -1. Find a, b.

(a) a = 2, b = 0 (b) a = 2, b = 1 (c) a = 0, b = 2 (d) a = 1, b = 2

(a) 126

63.	The angle	between	the curve	$y^2 = x$ and	$dx^2 = y$ at	t (1, 1) is
-----	-----------	---------	-----------	---------------	---------------	-------------

- (a) 90°
- (b) $\tan^{-1} \frac{3}{4}$
- (c) $\tan^{-1} \frac{4}{2}$

(d) None of these

(d) 45°

Find the maximum and minimum values of $f(x) = x + \sin 2x$ in the interval $[0, 2\pi]$.

(a) Maximum value = 2π

Minimum value = 0

(b) Maximum value = 0Minimum value = 2π

(c) Maximum value = 0

Minimum value = 0

- 65. If the curve $ay + x^2 = 7$ and $x^3 = y$, cut orthogonally at (1, 1), then the value of a is
 - (a) 1
- (b) 0

- (c) -6
- The total revenue received from the sale of x units of a product is given by: $R(x) = 5x^3 4x^2$, find the marginal revenue of x = 20.
 - (a) 5860
- (b) 5840
- (c) 5000
- (d) 5600
- 67. Find the equations of a tangent to the curve $x^3 2x^2y + xy^2 = 1$ at (1, -1).
 - (a) 2x y = 3
- (b) 2x = 3 (c) 2x + y = 3 (d) 2x + y = -3
- The point on the curve $y = 12x x^2$ where the slope of the tangent is zero will be
 - (a) (3, 9)
- (b) (2, 16)
- (c) (6,36)
- (d) None of these
- 69. Find the intervals in which $f(x) = -x^2 2x + 15$ is increasing or decreasing
 - (a) Increasing $(-\infty, -1)$

(b) Increasing $(\infty, -2)$

Decreasing $(-1, \infty)$

Decreasing $(0, \infty)$

(c) Increasing $(-\infty, -4)$

(d) None of these

- Decreasing $(-4, \infty)$
- The maximum value of slope of the curve $y = -x^3 + 3x^2 + 12x 5$ is
 - (a) 15
- (b) 12
- (c) 9
- (d) 0
- It is given that at x = 1, the function $f(x) = x^4 62x^2 + ax + a$ attains its maximum value, on the interval [0, 2]. The value of a is
 - (a) 20
- (b) -120
- (c) 120
- (d) 52

Answers

- **1.** (*d*)
- **2.** (a)
- **3.** (*b*)
- **4.** (b)
- **5.** (*d*)
- **6.** (c)

- 7. (c)
- 8. (a)
- **9.** (a)
- **10.** (b)
- **11.** (b)
- **12.** (*b*)

- **13.** (*b*)
- **14.** (b)
- **15.** (*b*)
- **16.** (*c*)
- **17.** (*b*)
- **18.** (*b*)

- **19.** (b)
- **20.** (*c*)
- **21.** (c)
- **22.** (*b*)
- **23.** (*b*)
- **24.** (c)

36. (*b*)

42. (*a*)

48. (*a*)

- **25.** (*d*)
- **26.** (*c*)
- **27.** (*b*)
- **28.** (a)
- **29.** (a)
 - **30.** (*d*)

31. (*d*)

37. (*a*)

32. (*c*)

38. (a)

- **33.** (*c*) **39.** (*d*)
- **40.** (b)

34. (*c*)

41. (c)

35. (*c*)

43. (*d*)

49. (*b*)

55. (*b*)

44. (b)

50. (*b*)

56. (*b*)

- **45.** (*b*) **51.** (a)
- **46.** (*d*) **52.** (*c*)

58. (*b*)

- **47.** (*c*)
- **53.** (*b*)

65. (*d*)

- **59.** (*c*)
- **54.** (*c*) **60.** (*a*)

- **61.** (*a*) **67.** (*a*)
- **62.** (a) **68.** (c)
- **63.** (*b*) **69.** (*a*)

57. (*b*)

- **64.** (a) **70.** (*a*)
- **71.** (*c*)
- **66.** (*b*)

CASE-BASED QUESTIONS

Choose the correct option in the following questions.

1. Read the following and answer any four questions from (i) to (v).

The Relation between the height of the plant (y in cm) with respect to exposure to sunlight is governed by the following equation $y = 4x - \frac{1}{2}x^2$ where x is the number of days exposed to sunlight.

Based on the above informations answer the following:

(i) The rate of growth of the plant with respect to sunlight is

(a)
$$4x - \frac{1}{2}x^2$$
 (b) $4 - x$ (c) $x - 4$

$$(b) 4 - x$$

(c)
$$x - 4$$

(d)
$$x - \frac{1}{2}x^2$$

(ii) What is the number of days it will take for the plant to grow to the maximum height?

(iii) What is the maximum height of the plant?

(iv) What will be the height of the plant after 2 days?

$$(b) 6 cm$$
 $(c) 8 cm$

(v) If the height of the plant is $\frac{7}{2}$ cm, the number of days it has been exposed to the sunlight is

$$(b)$$
 3 cm

(i) We have, Sol.

the rate of growth = $\frac{dy}{dx}$

$$= \frac{d\left(4x - \frac{1}{2}x^2\right)}{dx}$$
$$= 4 - x$$

 \therefore Option (b) is correct.

For height to be maximum or minimum

$$\frac{dy}{dx} = 0 \implies 4 - x = 0 \implies x = 4$$

$$\therefore \frac{d^2y}{dx^2} = -1 < 0 \implies y \text{ will be maximum when } x = 4$$

 \therefore Number of required days = 4

.. Option (a) is correct.

(*iii*) We have,
$$y = 4x - \frac{1}{2}x^2$$

 \therefore When x = 4 the height of the plant will be maximum which is

152 Mathematics—XII: Term—1

$$y = 4 \times 4 - \frac{1}{2} \times (4)^2 = 16 - 8 = 8 \text{ cm}$$

- \therefore Option (c) is correct.
- (iv) Height of the plant after 2 days is given by

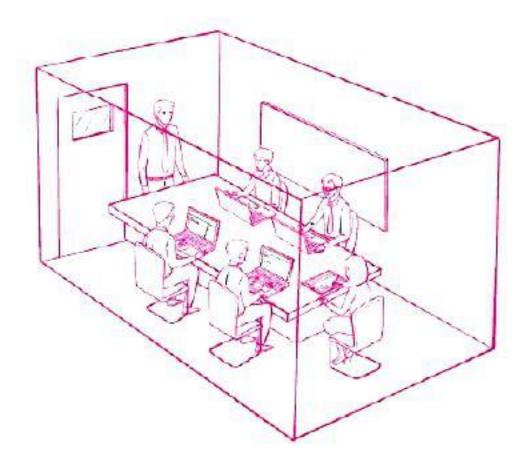
$$y = 4 \times 2 - \frac{1}{2} \times (2)^2 = 8 - 2 = 6 \text{ cm}$$

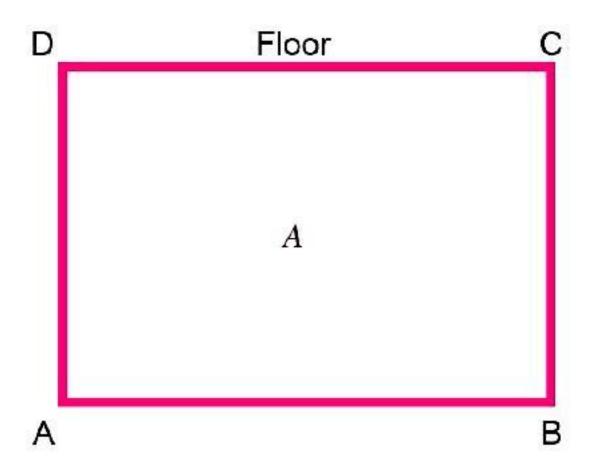
- ∴ Option (b) is correct.
- (v) Given height of the plant, $y = \frac{7}{2}$

$$\therefore \frac{7}{2} = 4x - \frac{1}{2}x^2 \implies 7 = 8x - x^2$$

$$\Rightarrow x^2 - 8x + 7 = 0 \Rightarrow x^2 - 7x - x + 7 = 0$$

$$\Rightarrow x(x - 7) - 1(x - 7) = 0$$


$$\Rightarrow (x - 1)(x - 7) = 0$$


$$\Rightarrow x = 1 \text{ or } x = 7$$

$$x \neq 7$$

 $\therefore x = 1 \text{ cm}$

- \therefore Option (d) is correct.
- 2. A rectangular hall is to be developed for a meeting of farmers in an agriculture college to aware them for new technique in cultivation. It is given that the floor has a fixed perimeter P as shown below.

Based on the above information answer the following.

(i) If x and y represents the length and breadth of the rectangular region, then the relation between the variables is

(a)
$$x + y = P$$

(b)
$$x^2 + y^2 = P$$

(a)
$$x + y = P$$
 (b) $x^2 + y^2 = P$ (c) $2(x + y) = P$ (d) $x + 2y = P$

$$(d) x + 2y = P$$

(ii) The area of the rectangular region A' expressed as a function of x is

(a)
$$\frac{1}{2}(P+x^2)$$

(b)
$$\frac{1}{2}(Px - 2x^2)$$

(a)
$$\frac{1}{2}(P+x^2)$$
 (b) $\frac{1}{2}(Px-2x^2)$ (c) $\frac{1}{2}(Px+2x^2)$ (d) $Px-2x^2$

$$(d) Px - 2x^2$$

- (iii) Principal of agriculture college is interested in maximizing the area of floor 'A'. For this to happen the value of x should be

- (iv) To maximizing the area of floor 'A'. For this to happen the value of y should be

- (a) $\frac{P}{2}$ (b) $\frac{P}{4}$ (c) $\frac{P}{3}$ (d) $\frac{2P}{5}$

(v) The maximum value of area of floor 'A' is

(a)
$$\frac{P^2}{8}$$
 (b) $\frac{2P}{9}$

(b)
$$\frac{2P}{9}$$

(c)
$$\frac{P}{10}$$

(d)
$$\frac{P^2}{16}$$

(i) Perimeter of rectangle ABCD = 2(l + b) = 2(x + y)Sol. Option (*c*) is correct.

(ii) :
$$A = x.y$$

$$= x. \frac{P - 2x}{2}$$

$$= \frac{Px - 2x^2}{2}$$
Given
$$\Rightarrow 2(x + y) = P$$

$$\Rightarrow y = \frac{P}{2} - x$$

$$= \frac{P - 2x}{2}$$

Option (b) is correct.

(iii)
$$\therefore$$
 $A = \frac{Px - 2x^2}{2}$

$$\Rightarrow \frac{dA}{dx} = \frac{P - 4x}{2}$$

For maximum or minimum value of x

$$\frac{dA}{dx} = 0 \Rightarrow \frac{P - 4x}{2} = 0$$

$$\Rightarrow P - 4x = 0 \Rightarrow x = \frac{P}{4}$$
Also,
$$\frac{d^2A}{dx^2}\Big|_{x = \frac{P}{4}} = -2 \text{ (-ve)}$$

Option (*d*) is correct.

(iv) Putting
$$x = \frac{P}{4}$$
 in $y = \frac{P - 2x}{2}$

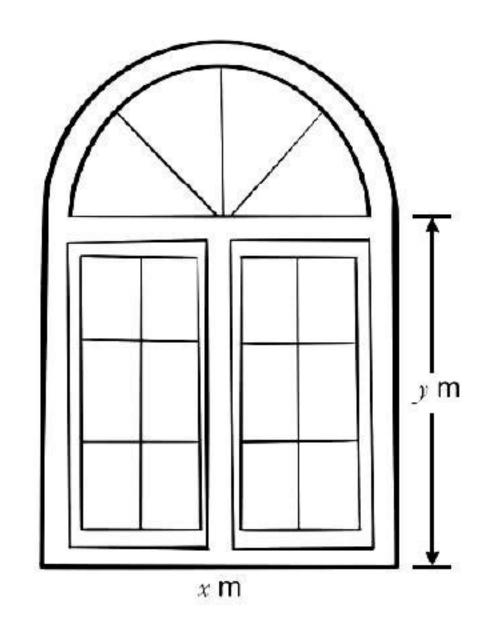
$$\Rightarrow y = \frac{P - 2 \times \frac{P}{4}}{2}$$

$$= \frac{4P - 2P}{8} = \frac{2P}{8} = \frac{P}{4}.$$

Option (b) is correct.

(v) Since $A = \text{length} \times \text{breadth}$ $= x \times y$

$$= x \times y$$
$$= \frac{P}{4} \times \frac{P}{4} = \frac{P^2}{16}.$$


Option (*d*) is correct.

3. Dr. Ritam residing in Delhi went to see an apartment of 3 BHK in Noida. The window of the house was in the form of a rectangle surmounted by a semicircular opening having a perimeter of the window 10 m as shown in figure.

Based on above information answer the following.

(i) If x any y represents the length and breadth of the rectangular region, then the relation between the variables is

(a)
$$x + y + \frac{x}{2} = 10$$

(b)
$$x + 2y + \frac{x}{2} = 10$$

(a)
$$x + y + \frac{x}{2} = 10$$
 (b) $x + 2y + \frac{x}{2} = 10$ (c) $x + 2y + \pi \frac{x}{2} = 10$ (d) $2x + 2y = 10$

(*d*)
$$2x + 2y = 10$$

(ii) The area of the window (A) expressed as a function of x is

(a)
$$A = x - \frac{\pi x^3}{8} - \frac{x^2}{2}$$

(b)
$$A = 5x - \frac{x^2}{2} - \frac{\pi x^2}{8}$$

(c)
$$A = 5x - \frac{x^2}{2} - \frac{3x^2}{8}$$

(d)
$$A = 5x + \frac{x^2}{2} + \frac{\pi x^2}{8}$$

(iii) Dr. Ritam is interested in maximising the area of the whole window. For this to happen the value of x should be

(a)
$$\frac{20}{\pi}$$

(a)
$$\frac{20}{\pi}$$
 (b) $\frac{20}{4-\pi}$ (c) $\frac{20}{2+\pi}$

(c)
$$\frac{20}{2+\pi}$$

$$(d) \ \frac{20}{4+\pi}$$

(iv) For maximum value of A, the breadth of rectangular part of window is

(a)
$$\frac{20}{4+\pi}$$
 (b) $\frac{20}{\pi}$ (c) $\frac{10}{4+\pi}$ (d) $\frac{5}{2+\pi}$

(b)
$$\frac{20}{\pi}$$

(c)
$$\frac{10}{4+\pi}$$

(d)
$$\frac{5}{2+\pi}$$

(v) The maximum area of window is

(a)
$$\frac{100}{(4+\pi)^2}$$
 sq.m

(b)
$$\frac{10\pi}{(4+\pi)^2}$$
 sq.m

(c)
$$\frac{800}{(4+\pi)^2}$$
 sq.m

(a)
$$\frac{100}{(4+\pi)^2}$$
 sq.m (b) $\frac{10\pi}{(4+\pi)^2}$ sq.m (c) $\frac{800}{(4+\pi)^2}$ sq.m (d) $\frac{200+50\pi}{(4+\pi)^2}$ sq.m

Sol. (i) Since perimeter of window = x + y + y + perimeter of semicircle

$$= x + 2y + \frac{1}{2} \times 2\pi \times \frac{x}{2}$$
 [Here radius of semicircle is $\frac{x}{2}$]
= $x + 2y + \frac{\pi x}{2}$

Option (c) is correct.

(ii)
$$A = x \times y + \frac{1}{2}\pi \left(\frac{x}{2}\right)^2$$

$$= x \times y + \frac{\pi x^2}{8} = x \left(5 - \frac{x}{2} - \frac{\pi x}{4}\right) + \frac{\pi x^2}{8}$$

$$\Rightarrow y = \left(5 - \frac{x}{2} - \frac{\pi x}{4}\right)$$

$$\therefore 10 = x + 2y + \frac{\pi x}{2}$$

$$\Rightarrow y = \left(5 - \frac{x}{2} - \frac{\pi x}{4}\right)$$

$$= 5x - \frac{x^2}{2} - \frac{\pi x^2}{4} + \frac{\pi x^2}{8} = 5x - \frac{x^2}{2} - \frac{\pi x^2}{8}$$

Option (b) is correct.

(iii) For maximum value of A

$$\frac{dA}{dx} = 0$$

$$\Rightarrow 5 - x - \frac{\pi x}{4} = 0 \qquad \Rightarrow x + \frac{\pi x}{4} = 5$$

$$\Rightarrow 4x + \pi x = 20 \qquad \Rightarrow x (4 + \pi) = 20$$

$$\Rightarrow x = \frac{20}{4 + \pi}$$

Option (*d*) is correct.

$$(iv) : y = 5 - \frac{x}{2} - \frac{\pi x}{4}$$

$$= 5 - \left(\frac{2x + \pi x}{4}\right) = 5 - x\left(\frac{2 + \pi}{4}\right)$$

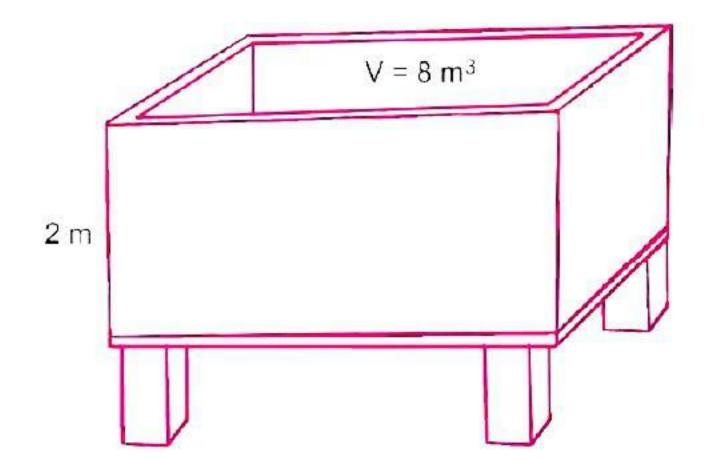
$$= 5 - \frac{20}{4 + \pi} \cdot \frac{2 + \pi}{4} = \frac{20(4 + \pi) - 20(2 + \pi)}{4(4 + \pi)}$$

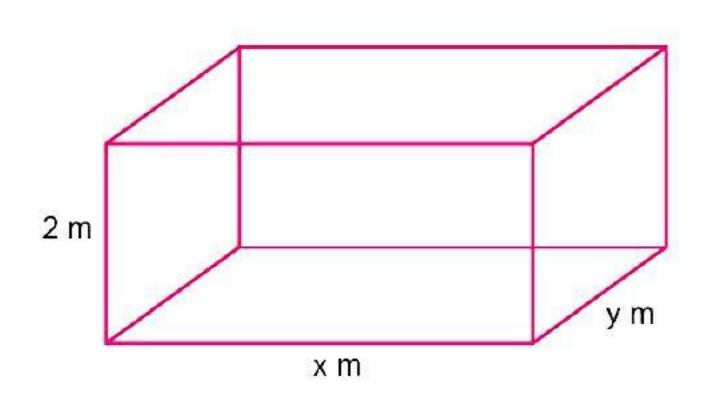
$$= \frac{80 + 20\pi - 40 - 20\pi}{4(4 + \pi)} = \frac{40}{4(4 + \pi)}$$

$$= \frac{10}{4 + \pi}$$

Option (c) is correct.

(v) Area of window = ar(rectangular part) + ar(semi circular part)


$$= \frac{20}{4+\pi} \cdot \frac{10}{4+\pi} + \frac{1}{2}\pi \cdot \left(\frac{x}{2}\right)^2$$


$$= \frac{200}{(4+\pi)^2} + \frac{\pi x^2}{8} = \frac{200}{(4+\pi)^2} + \frac{\pi}{8} \left(\frac{20}{4+\pi}\right)^2$$

$$= \frac{200}{(4+\pi)^2} + \frac{400\pi}{8(4+\pi)^2} = \frac{200+50\pi}{(4+\pi)^2}$$

Option (*d*) is correct.

4. On the request of villagers, a construction agency designs a tank with the help of an architect. Tank consists of rectangular base with rectangular sides, open at the top so that its depth is 2 m and volume is 8 m3 as shown below:

Based on the above information answer the following questions:

(i) If x and y represent the length and breadth of its rectangular base, then the relation between the variables is

$$(a) x+y=8$$

$$(b) x \cdot y = 4$$

$$(c) x + y = 4$$

(a)
$$x + y = 8$$
 (b) $x \cdot y = 4$ (c) $x + y = 4$ (d) $\frac{x}{y} = 4$

156 Mathematics—XII: Term-1

(ii) If construction of tank cost ₹70 per sq. metre for the base and ₹45 per square metre for sides, then making cost 'C' expressed as a function of x is

(a)
$$C = 80 + 80\left(x + \frac{4}{x}\right)$$

(b)
$$C = 280x + 280\left(x + \frac{4}{x}\right)$$

(c)
$$C = 280 + 180\left(x + \frac{4}{x}\right)$$

(d)
$$C = 70x + 70\left(x + \frac{x}{4}\right)$$

- (iii) The owner of a construction agency is interested in minimizing the cost 'C' of whole tank, for this to happen the value of x should be
 - (a) 4 m
- (b) 3 m
- (c) 1 m
- (d) 2 m
- (iv) For minimum cost 'C' the value of y should be
 - (a) 1 m
- (b) 3 m
- (c) 2 m
- (d) 4 m
- (v) The Pradhan of village wants to know minimum cost. The minimum cost is
 - (a) ₹2000
- (b) ₹4000
- (c) ₹11,000
- (d) ₹1000
- (i) Volume of tank = length \times breadth \times height (Depth) Sol.

$$8 = x.y. 2$$

$$\Rightarrow$$

$$2xy = 8$$

$$\Rightarrow xy = 4$$

Option (b) is correct.

(ii) Since 'C' is cost of making tank

$$C = 70xy + 45 \times 2(2x + 2y)$$

$$\Rightarrow C = 70xy + 90(2x + 2y)$$

$$\Rightarrow C - 70xy + 180(x + y)$$

$$C = 70x \times \frac{4}{x} + 180\left(x + \frac{4}{x}\right)$$

$$\Rightarrow C = 280 + 180\left(x + \frac{4}{x}\right)$$

$$C - 70xy + 180 (x + y)$$

$$C = 70x \times \frac{4}{x} + 180 \left(x + \frac{4}{x}\right)$$

$$C = 280 + 180 \left(x + \frac{4}{x}\right)$$

$$\Rightarrow y = \frac{8}{2x}$$

$$\Rightarrow y = \frac{4}{x}$$

$$\Rightarrow y = \frac{4}{x}$$

Option (*c*) is correct.

(iii) For maximum or minimum

$$\frac{dC}{dx} = 0$$

$$\frac{d}{dx}\left(280 + 180\left(x + \frac{4}{x}\right)\right) = 0 \qquad \Rightarrow 180\left(1 + 4\left(-\frac{1}{x^2}\right)\right) = 0$$

$$180\left(1 - \frac{4}{x^2}\right) = 0 \qquad \Rightarrow 1 - \frac{4}{x^2} = 0$$

$$\Rightarrow 1 - \frac{4}{x^2} = 0$$

$$\Rightarrow$$

$$\frac{4}{x^2} = 1$$

$$\Rightarrow x^2 = 4$$

$$\Rightarrow$$

$$x = \pm 2$$

$$\Rightarrow$$

$$x = 2$$
 (length can never be negative)

$$\frac{d^2C}{dx^2} = 180\left(+\frac{8}{x^3}\right)$$

$$\Rightarrow$$

$$\left. \frac{d^2C}{dx^2} \right|_{x=2} = 180 \times \frac{8}{8} = 180 = + \text{ve}$$

Hence, to minimize C, x = 2m

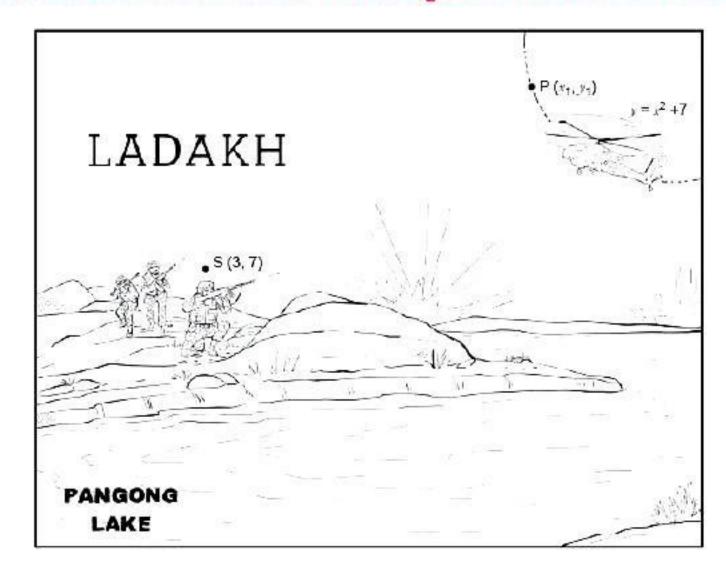
Option (*d*) is correct.

$$xy = 4$$
$$y = \frac{4}{x}$$

(iv) ::
$$xy = 4$$

 $\Rightarrow y = \frac{4}{x}$ $\Rightarrow y = \frac{4}{2}$ $\Rightarrow y = 2 \text{ m}$

$$\Rightarrow$$
 $y = 2 \text{ m}$


Option (c) is correct.
(v) :
$$C = 280 + 180\left(x + \frac{4}{x}\right) = 280 + 180(2 + 2)$$

$$= 280 + 180 \times 4 = 280 + 720 = ₹1000$$

Option (*d*) is correct.

5. These days chinese and Indian troops are engaged in aggressive melee, face-offs skirmishes at locations near the disputed Pangong Lake in Ladakh.

One day a helicopter of enemy is flying along the curve represented by $y = x^2 + 7$. A soldier placed at (3, 7) wants to shoot down the helicopter when it is nearest to him.

Based on above information answer the following questions:

(i) If (x_1, y_1) represents the position of helicopter on the curve $y = x^2 + 7$, when the distance D from soldier placed at S(3, 7) is minimum, then the relation between x_1 , y_1 is

(a)
$$x_1 = y_1^2 + 7$$

(b)
$$y_1 = x_1^2 + 7$$

(c)
$$y_1 + x_1^2 = 7$$

(a)
$$x_1 = y_1^2 + 7$$
 (b) $y_1 = x_1^2 + 7$ (c) $y_1 + x_1^2 = 7$ (d) $y_1^2 + x_1 = 7$

(ii) The distance 'D' expressed as a function of x_1 is

(a)
$$D = x_1^2 - 6x_1 + x_1^4$$

(b)
$$D = x_1^2 - 6x_1 + 9 + x_1^4$$

(c)
$$D^2 = x_1^2 - 6x_1 + 9 + x_1^4$$

(c)
$$D^2 = x_1^2 - 6x_1 + 9 + x_1^4$$
 (d) $D^2 = x_1^2 + 6x_1 - 9 + x_1^4$

- (iii) The soldier at S wants to know when the enemy helicopter is nearest to soldier, then the value y_1 should be
 - (a) 4
- (b) 3
- (c) 8
- (d) 5
- (iv) When the enemy helicopter is nearest to soldier, then the value of D should be
 - (a) 4 units
- (*b*) 5 units
- (c) $\sqrt{5}$ units (d) $\sqrt{7}$ units
- (v) The nearest position of helicopter from soldier is
 - (a) $(1, \sqrt{5})$ (b) (1, 8) (c) (1, 7)
- (*d*) $(1, \sqrt{7})$

- **Sol.** (*i*) : (x_1, y_1) lie on curve $y = x^2 + 7$
 - (x_1, y_1) satisfy the equation of curve
 - $y_1 = x_1^2 + 7$

Option (*b*) is correct.

- (ii) Here, since soldier is at (3, 7)
- 158 Mathematics—XII: Term-1

$$D = \sqrt{(x_1 - 3)^2 + (y_1 - 7)^2} \qquad \Rightarrow \qquad D^2 = (x_1 - 3)^2 + (y_1 - 7)^2$$

$$\therefore (x_1, y_1) \text{ lie on curve } y = x^2 + 7$$

$$\Rightarrow \qquad y_1 = x_1^2 + 7$$

$$D^2 = (x_1 - 3)^2 + (x_1^2 + 7 - 7)^2$$

$$D^2 = x_1^2 - 6x_1 + 9 + x_1^4$$

Option (c) is correct.

(iii) We have $D^2 = x_1^2 - 6x_1 + 9 + x_1^4$

$$\frac{d(D^2)}{dx_1} = 2x_1 - 6 + 4x_1^3$$

For minimum value of D i.e. D^2

$$\frac{d(D^2)}{dx_1} = 0$$

$$\Rightarrow$$
 $2x_1 + 4x_1^3 - 6 = 0$

$$\Rightarrow 4x_1^2(x_1-1)+4x_1(x_1-1)+6(x_1-1)=0$$

$$\Rightarrow (x_1 - 1)(4x_1^2 + 4x_1 + 6) = 0$$

$$\Rightarrow$$
 $x_1 - 1 = 0$

[:
$$4x_1^2 + 4x_1 + 6 = 0$$
, have no real roots *i.e.*, real value of x_1 is not possible.]

$$\Rightarrow$$
 $x_1 = 1$

 \Rightarrow For minimum points, (distance) or nearest distanct $x_1 - 1$

Also
$$\frac{d^2(D^2)}{dx_1^2} = 2 + 12x_1^2$$
 $\Rightarrow \frac{d^2(D^2)}{dx_1^2}\Big|_{x=1} = +ve$

Since (x_1, y_1) lie on curve $y = x^2 + 7$

$$\Rightarrow \qquad y_1 = x_1^2 + 7$$

$$\Rightarrow y_1 = 1^2 + 7 \qquad [For nearest value of D, x_1 = 1]$$
$$= 1 + 7 = 8$$

Option (c) is correct.

(iv) For nearest distance D i.e. minimum value of D, $x_1 = 1$

$$D^{2} = x_{1}^{2} - 6x_{1} + 9 + x_{1}^{4}$$

$$D^{2} = 1^{2} - 6(1) + 9 + (1)^{4}$$

$$D^{2} = 1 - 6 + 9 + 1$$

$$D^{2} = 5$$

$$D = \sqrt{5} \text{ units}$$

Option (c) is correct.

(v) For minimum value of D

$$x_1 = 1 \text{ and } y_1 = 8$$

Nearest position of helicopter is (1, 8).

Option (b) is correct.

ASSERTION-REASON QUESTIONS

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false and R is also false.
- 1. Assertion (A): The rate of change of area of a circle with respect to its radius r when r = 6 cm is 12π cm²/cm.
 - **Reason** (R): Rate of change of area of a circle with respect to its radius r is $\frac{dA}{dr}$, where A is the area of the circle.
- **2. Assertion** (A): $f(x) = \tan x x$ always increases.
 - **Reason** (R): Any function y = f(x) is increasing if $\frac{dy}{dx} > 0$.
- **3.** Assertion (A): $f(x) = x^4$ is decreasing in the interval $(0, \infty)$.
 - **Reason** (**R**): Any function y = f(x) is decreasing if $\frac{dy}{dx} < 0$.
- **4. Assertion (A):** The slope of the tangent to the curve $y = x^3$ where it cuts *x*-axis, is 0.
 - **Reason** (R): Slope of tangent to the curve y = f(x) at point (x_0, y_0) is $\frac{dy}{dx}$ at (x_0, y_0) .

Answers

- **1.** (a)
- **2.** (a)
 - 3. (d)
- **4.** (a)

HINTS/SOLUTIONS OF SELECTED MCQS

1. We have, $f(x) = x^2 e^{-x}$

$$\Rightarrow f'(x) = -x^2 e^{-x} + 2x e^{-x} = x e^{-x} (2 - x)$$

for f(x) to be strictly increasing, f'(x) > 0

$$\Rightarrow x e^{-x} (2-x) > 0 \Rightarrow x (2-x) > 0$$

$$\Rightarrow x(x-2) < 0 \Rightarrow 0 < x < 2$$

$$\therefore x \in (0,2)$$

Option (*d*) is correct.

- 2. Let (x_1, y_1) be the point on the given curve $3y = 6x 5x^3$ at which the normal passes through the origin. Then we have $\left(\frac{dy}{dx}\right)_{(x_1, y_1)} = 2 5x_1^2$. Again the equation of the normal at (x_1, y_1) passing through the origin gives $2 5x_1^2 = \frac{-x_1}{y_1} = \frac{-3}{6 5x_1^2}$. Since $x_1 = 1$ satisfies the equation, therefore, correct answer is (a).
- 3. We have, $f(x) = x^x$ Let $y = x^x$

160 Mathematics-XII: Term-1

and $\log y = x \log x$

$$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = x \cdot \frac{1}{x} + \log x \cdot 1$$
 [Differentiate both sides]

$$\Rightarrow \frac{dy}{dx} = (1 + \log x).x^x$$

$$\therefore \frac{dy}{dx} = 0 \implies (1 + \log x). \ x^x = 0 \qquad [\because x^x \neq 0]$$

$$\Rightarrow \log x = -1 \Rightarrow \log x = \log e^{-1}$$

$$\Rightarrow \qquad x = e^{-1} \Rightarrow \quad x = \frac{1}{e}$$

Hence, f(x) has a stationary point at $x = \frac{1}{a}$.

Option (b) is correct.

4. From first equation of the curve, we have $3x^2 - 3y^2 - 6xy \frac{dy}{dx} = 0$

$$\Rightarrow \frac{dy}{dx} = \frac{x^2 - y^2}{2xy} = (m_1)$$
 say and second equation of the curve gives

$$6xy + 3x^2 \frac{dy}{dx} - 3y^2 \frac{dy}{dx} = 0 \qquad \Rightarrow \qquad \frac{dy}{dx} = \frac{-2xy}{x^2 - y^2} = (m_2) \text{say}$$

Since $m_1 \cdot m_2 = -1$. Therefore, the cut at right angles

Option (b) is correct.

6. $\frac{dy}{dx} = \cos x$. Therefore, slope of normal $= \left(\frac{-1}{\cos x}\right)_{x=0} = -1$.

Hence, the equation of normal is y - 0 = -1 (x - 0) or x + y = 0.

Therefore, correct answer is (c).

7. Here, $y = e^{2x}$

$$\Rightarrow \frac{dy}{dx} = 2e^{2x} \Rightarrow \frac{dy}{dx}\Big|_{(0,1)} = 2 \times e^0 = 2 \times 1 = 2$$

- ... Slope of tangent to the curve $y = e^{2x}$ at (0, 1) = 2
- \Rightarrow Equation of tangent to the curve $y = e^{2x}$ at (0, 1) is

$$\frac{y-1}{x-0} = 2 \qquad \Rightarrow \quad y = 2x+1$$

For meeting point with x-axis, putting y = 0, we get

$$0 = 2x + 1 \qquad \Rightarrow \qquad x = -\frac{1}{2}$$

Hence required point is $\left(-\frac{1}{2},0\right)$.

Option (c) is correct.

11. Let $f(x) = x^{1/x}$

$$\therefore f'(x) = x^{1/x} \left(\frac{1 - \log x}{x^2} \right)$$

For critical point

$$f'(x) = 0 \implies 1 - \log x = 0$$

$$\Rightarrow \log x = 1 \Rightarrow x = e \text{ (critical point)}$$

Now,
$$f''(x)]_{x=e} = -ve$$

$$\Rightarrow$$
 $x = e$ is maxima of $f(x) = x^{1/x}$.

$$\Rightarrow$$
 $e^{1/e}$ is greatest value of $f(x) = x^{1/x}$.

Also,
$$f(4) = 4^{1/4} = 2^{2 \times 1/4} = 2^{1/2} = f(2)$$

[: By Rolle's theorem f(a) = f(b) : $\exists c(a, b) s.t. f'(c) = 0$]

And
$$1 < 2 < e < 3 < 4 < 5 < 6 < 7$$

Hence, $3^{1/3}$ is the greatest number.

Option (*b*) is correct.

13. Given,
$$y = x^2 + ax + 25$$
 $\Rightarrow \frac{dy}{dx} = 2x + a$...(i

The curve (i) touches the x-axis implies that x – axis is tangent to curve at meeting point.

$$\Rightarrow \quad \frac{dy}{dx} = 0 \qquad \Rightarrow \quad 2x + a = 0$$

$$\Rightarrow x = -\frac{a}{2}$$

 \Rightarrow The co-ordinate of meeting point are $\left(-\frac{a}{2},0\right)$, therefore it satisfies the curve (i)

$$\Rightarrow \left(-\frac{a}{2}\right)^2 + a\left(-\frac{a}{2}\right) + 25 = 0$$

$$\Rightarrow \frac{a^2}{4} - \frac{a^2}{2} + 25 = 0 \Rightarrow -a^2 + 100 = 0$$

$$\Rightarrow a = \pm 10$$

Option (*b*) is correct.

16.
$$f(x) = 2x + \cos x$$

$$f'(x) = 2 - \sin x > 0 \ \forall x \in R$$

$$\Rightarrow$$
 $f(x)$ is an increasing function

Option (c) is correct.

17.
$$f(x) = 2 \sin 3x + 3 \cos 3x$$

$$\Rightarrow$$
 $f'(x) = 6 \cos 3 x - 9 \sin 3x$

$$\Rightarrow f''(x) = -18\sin 3x - 27\cos 3x$$

$$\therefore f''\left(\frac{5\pi}{6}\right) = -18\sin\left(\frac{5\pi}{2}\right) - 27\cos\left(\frac{5\pi}{2}\right)$$

$$\Rightarrow f''\left(\frac{5\pi}{6}\right) = -18\sin\left(2\pi + \frac{\pi}{2}\right) - 27\cos\left(2\pi + \frac{\pi}{2}\right)$$
$$= -18\sin\frac{\pi}{2} - 27\cos\frac{\pi}{2} = -18 < 0$$

$$\therefore$$
 At $x = \frac{5\pi}{6}$, $f(x)$ is minimum.

Option (*b*) is correct.

$$18. \quad y = x^{1/2} \Longrightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{x}}$$

$$\therefore \left. \frac{dy}{dx} \right|_{(0,0)} = \infty$$

 \Rightarrow Tangent of the curve $y = x^{1/2}$ at (0, 0) is parallel to y-axis.

Option (*b*) is correct.

162 Mathematics—XII: Term-1

21.
$$f(x) = \sin x - ax + b$$

$$\Rightarrow f'(x) = \cos x - a$$

For increasing function

$$f'(x) \ge 0$$

$$\cos x - a \ge 0 \Rightarrow \cos x \ge a$$

i.e.
$$a \le \cos x$$
 $a \le \min(\cos x) = -1$

$$\therefore a \in (-\infty, -1)$$
.

So option (*c*) is correct.

22.
$$f(x) = \frac{2x^2 - 1}{x^4}$$

$$f'(x) = \frac{x^4 (4x) - (2x^2 - 1)(4x^3)}{(x^4)^2} = \frac{4x^5 - 8x^5 + 4x^3}{x^8}$$
$$= \frac{-4x^5 + 4x^3}{x^8} = \frac{-4x^2 + 4}{x^5}$$

f is decreasing if $f'(x) \le 0$

$$\Rightarrow \frac{-4x^2+4}{x^5} \le 0 \Rightarrow \frac{4x^2-4}{x^5} \ge 0$$

$$\Rightarrow x^2 - 1 \ge 0 \Rightarrow x^2 \ge 1 \Rightarrow |x| \ge 1 \text{ and } x > 0$$

$$\Rightarrow x \in [1, \infty)$$

Option (*b*) is correct.

25. We have $e^y = 1 + x^2$

$$\Rightarrow e^y \frac{dy}{dx} = 2x$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x}{e^y} = \frac{2x}{1+x^2} \qquad [\because e^y = 1+x^2]$$

$$\Rightarrow m = \frac{2x}{1+x^2} \text{ or } |m| = \frac{2|x|}{1+|x|^2}$$

As
$$1+|x|^2-2|x|=(1-|x|)^2 \ge 0$$

$$\Rightarrow 1 + |x|^2 \ge 2|x| \qquad \Rightarrow \qquad 1 \ge \frac{2|x|}{1 + |x|^2} = |m|$$

$$\Rightarrow$$
 $|m| \leq 1$

Option (*d*) is correct.

26. We have

$$y = x^3 - ax^2 + x + 1 \Rightarrow \frac{dy}{dx} = 3x^2 - 2ax + 1$$

From question
$$\frac{dy}{dx} \ge 0 \Rightarrow 3x^2 - 2ax + 1 \ge 0 \ \forall \ x$$

$$\therefore D \le 0 \Rightarrow 4a^2 - 12 \le 0 \Rightarrow 4a^2 \le 12 \Rightarrow a^2 \le 3$$

$$\Rightarrow$$
 $|a| \le \sqrt{3} \Rightarrow -\sqrt{3} \le a \le \sqrt{3}$

Option (c) is correct.

27. We have
$$y = x^2 - x \Rightarrow \frac{dy}{dx} = 2x - 1$$

Slope of tangent
$$m = \frac{dy}{dx} = 2x - 1$$

...(i)

Since the line y = 2 cuts the curve $y = x^2 - x$

$$\Rightarrow$$
 2 = $x^2 - x \Rightarrow x^2 - x - 2 = 0$

$$\Rightarrow x^2 + x - 2x - 2 = 0 \Rightarrow x(x+1) - 2(x+1) = 0$$

$$\Rightarrow$$
 $(x+1)(x-2)=0$

$$\Rightarrow x = -1 \text{ or } 2$$

Point of intersection of the line y = 2 and the curve

$$y = x^2 - x$$
 are $(-1, 2), (2, 2)$

As point (2, 2) lies in first quadrant

 \therefore Slope of tangent at (2, 2) from (i) is $m = 2 \times 2 - 1 = 3$

Option (b) is correct.

29.
$$y = \cos^{-1}(\cos x)$$

$$\Rightarrow \cos y = \cos x$$

$$\Rightarrow -\sin y \frac{dy}{dx} = -\sin x$$

$$\Rightarrow \frac{dy}{dx} = \frac{\sin x}{\sin x}$$

$$\frac{dy}{dx}\bigg|_{x=-\frac{\pi}{4}} = \frac{\sin\left(-\frac{\pi}{4}\right)}{\sin\left(-\frac{\pi}{4}\right)} = \frac{-\frac{1}{\sqrt{2}}}{-1/\sqrt{2}} = 1$$

Option (a) is correct.

32.
$$S = b^2x + c^2y$$
 and $xy = a^2$

$$\Rightarrow$$
 $S = b^2 x + \frac{a^2 c^2}{x}$

$$\therefore \frac{dS}{dx} = b^2 - \frac{c^2 a^2}{x^2} = 0$$

$$b^2 - \frac{c^2 a^2}{x^2} = 0 x^2 = \frac{c^2 a^2}{b^2} x = \pm \frac{ca}{b}$$

$$\frac{d^2S}{dx^2} = \frac{2c^2a^2}{x^3}$$

$$\therefore \frac{d^2S}{dx^2} \bigg|_{x = \frac{ca}{b}} = \frac{2c^2a^2}{\frac{c^3a^3}{b^3}} = \frac{2b^3}{ca} > 0$$

$$\therefore \text{ Minimum value of } S = b^2 \times \frac{ca}{b} + \frac{c^2 a^2}{ca/b} = abc + abc = 2abc$$

Option (c) is correct.

33.
$$f(x) = x^4 - x^2 - 2x + 6$$

$$\Rightarrow$$
 $f'(x) = 4x^3 - 2x - 2$

$$f'(x) = 0 \Rightarrow 4x^3 - 2x - 2 = 0$$

$$\Rightarrow$$
 $2x^3 - x - 1 = 0$

$$\Rightarrow$$
 $2x^3 - 2x^2 + 2x^2 - x - 1 = 0$

$$\Rightarrow$$
 $2x^3 - 2x^2 + 2x^2 - 2x + x - 1 = 0$

164 Mathematics-XII: Term-1

$$\Rightarrow$$
 $2x^2(x-1) + 2x(x-1) + 1(x-1) = 0$

$$\Rightarrow$$
 $(x-1)(2x^2+2x+1)=0$

$$\Rightarrow$$
 $x = 1$ as $2x^2 + 2x + 1 \neq 0$ for any real x .

$$f''(x) = 12x^2 - 2$$

$$f''(1) = 12 - 2 = 10 > 0$$

Global minimum value of $f(x) = 1^4 - 1^2 - 2 \times 1 + 6 = 4$.

Option (c) is correct.

36.
$$f(x) = \cos x + \cos(\sqrt{2}x)$$

$$f(x) = 2\cos\frac{\sqrt{2}+1}{2}x\cos\frac{\sqrt{2}-1}{2}x \le 2$$

and it is 2 when $\cos \frac{\sqrt{2}+1}{2}x$ and $\cos \frac{\sqrt{2}-1}{2}$ are both equal to 1 for a value of x. This is possible only when x = 0.

Option (*b*) is correct.

39. Let
$$f(x) = |x|$$
 is not differential

$$f'(0) \neq 0$$
 but $f(x)$ has a minimum at $x = 0$

Option (*d*) is correct.

40.
$$f(x) = \sin^4 x + \cos^4 x \Rightarrow f'(x) = 4 \sin^3 x \cos x - 4 \cos^3 x \sin x$$

$$f(x)$$
 is increasing if $f'(x) > 0$

$$\Rightarrow 4 \sin^3 x \cos x - 4 \cos^3 x \sin x > 0$$

$$\Rightarrow 4 \sin x \cos x (\sin^2 x - \cos^2 x) > 0$$

$$\Rightarrow$$
 -2(2 sin $x \cos x$) (cos² $x - \sin^2 x$) > 0

$$\Rightarrow$$
 - 2 sin 2 x cos 2x > 0

$$\Rightarrow$$
 - sin $4x > 0$

$$\therefore -\sin 4x > 0 \qquad \Rightarrow \sin 4x < 0$$

$$\Rightarrow \pi < 4x < 2\pi \qquad \Rightarrow \frac{\pi}{4} < x < \frac{\pi}{2}$$

$$\Rightarrow \frac{\pi}{4} < x < \frac{3\pi}{8}$$

Option (*b*) is correct.

41.
$$f'(x) = \frac{\sin x - x \cos x}{\sin^2 x}, g'(x) = \frac{\tan x - x \sec^2 x}{\tan^2 x}$$

Now $\frac{d}{dx}(\sin x - x \cos x) = \cos x + x \sin x - \cos x$

Now
$$\frac{d}{dx}(\sin x - x \cos x) = \cos x + x \sin x - \cos x$$

$$= x \sin x > 0$$
 for $0 \le x < 1$

$$\therefore$$
 sin $x - x \cos x$ is an increasing function.

But at x = 0, $x \sin x$ is 0

:. In
$$0 < x \le 1$$
, $\sin x - x \cos x > 0$

:.
$$f'(x) > 0$$
 for $0 < x \le 1$

So
$$f(x)$$
 is increasing in the interval $0 < x \le 1$.

Again
$$\frac{d}{dx}(\tan x - x \sec^2 x) = \sec^2 x - 2x \sec^2 x \tan x - \sec^2 x$$

$$= -2x \sec^2 x \tan x < 0 \text{ for } 0 \le x \le 1$$

 $\therefore g(x)$ is decreasing in $0 < x \le 1$

Option (c) is correct.

42.
$$h(x) = f(x) - \{f(x)\}^2 + \{f(x)\}^3$$

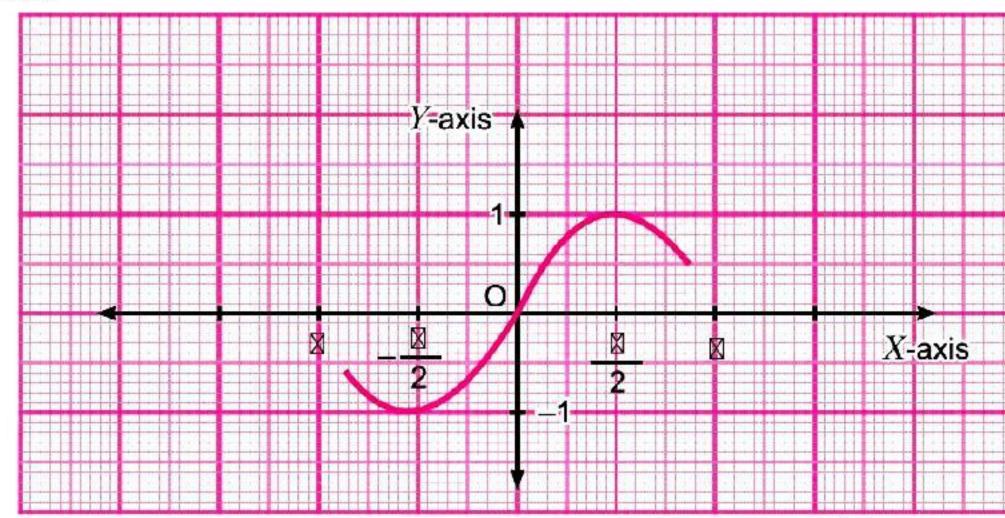
$$h'(x) = f'(x) - 2(f(x)f'(x) + 3\{(f(x)\}^2\}f'(x)$$

$$= \{1 - 2(f(x) + 3\{(f(x)\}^2\}f'(x)$$

$$= 3\left\{\frac{1}{3} - \frac{2}{3}f(x) + (f(x))^2\right\}f'(x)$$

$$= \left(3\left[(f(x))^2 - \frac{2}{3}f(x) + \frac{1}{9}\right] + \frac{2}{3}\right)f'(x)$$

$$= \left[3\left\{f(x) - \frac{1}{3}\right\}^2 + \frac{2}{3}\right]f'(x)$$


If f(x) is increasing, f'(x) > 0 and therefore h'(x) > 0

i.e., h(x) is increasing

If f(x) is decreasing, f'(x) < 0 and h'(x) < 0 i.e., h(x) is decreasing.

Option (a) is correct.

43. $f(x) = \sin x$

It is clear from the graph that f(x) is increasing in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$f(f(x)) = \sin(\sin x)$$

$$\therefore \frac{d}{dx} \{ f(f(x)) \} = \cos(\sin x) \cos x \ge 0, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$\therefore f\{f(x)\}\$$
is increasing in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

As $f\{f(x)\}$ is strictly increasing in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $f\left(f\left(-\frac{\pi}{2}\right)\right) = \sin\left(\sin\left(-\frac{\pi}{2}\right)\right)$

$$= \sin(-1) = -\sin 1$$

and
$$f\left(f\left(\frac{\pi}{2}\right)\right) = \left(\sin\left(\sin\frac{\pi}{2}\right)\right) = \sin 1$$

and the values $\pm \sin 1$ are not attained at any point in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we find that f(f(x)) is invertible in

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

Option (*d*) is correct.

44.
$$f(x) = 2\sin^3 x - 3\sin^2 x + 12\sin x + 5$$

 $f'(x) = 6\sin^2 x \cos x - 6\sin x \cos x + 12\cos x$

166 Mathematics-XII: Term-1

$$= 6 \cos x \{ \sin^2 x - \sin x + 2 \}$$

$$= 6\cos x \left\{ \sin^2 x - 2\sin x \times \frac{1}{2} + \frac{1}{4} - \frac{1}{4} + 2 \right\}$$

$$= 6 \cos x \left\{ \left(\sin x - \frac{1}{2} \right)^2 + \frac{7}{4} \right\} \ge 0 \ \forall \ x \in \left[0, \frac{\pi}{2} \right]$$

$$\therefore f(x)$$
 is increasing in $\left[0, \frac{\pi}{2}\right]$

Option (*b*) is correct.

46.
$$x = e^t \cos t, \frac{dx}{dt} = e^t \cos t - e^t \sin t = e^t (\cos t - \sin t)$$

$$y = e^t \sin t$$
, $\frac{dy}{dt} = e^t \sin t + e^t \cos t = e^t (\sin t + \cos t)$

$$\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\cos t + \sin t}{\cos t - \sin t}$$

∴ Slope of tangent to curve at
$$\frac{\pi}{4} = \infty$$

Tangent makes an angle of $\frac{\pi}{2}$ with the *x*-axis.

Option (*d*) is correct.

49.
$$f(x) = 2x^3 + 9x^2 + 12x - 1$$

$$f'(x) = 6x^2 + 18x + 12$$

f is decreasing so $f'(x) \le 0$

i.e.,
$$6x^2 + 18x + 12 \le 0 \Rightarrow x^2 + 3x + 2 \le 0$$

$$\Rightarrow x^2 + x + 2x + 2 \le 0 \Rightarrow x(x+1) + 2(x+1) \le 0$$

$$\Rightarrow$$
 $(x+1)(x+2) \leq 0$

$$-\infty + - +$$

$$-2 -1$$

 \therefore f(x) is decreasing in [-2, -1].

Option (*b*) is correct.

50.
$$f(x) = 4 \sin^3 x - 6 \sin^2 x + 12 \sin x + 100$$

$$\Rightarrow f'(x) = 12 \sin^2 x \cos x - 12 \sin x \cos x + 12 \cos x$$

$$\Rightarrow f'(x) < 0 \text{ if } x \in \left(\frac{\pi}{2}, \pi\right)$$

Option (b) is correct.

51.
$$f(x) = \tan x - x$$

$$\Rightarrow f'(x) = \sec^2 x - 1 \ge 0$$

∴ Range (sec x) = $(-\infty, -1] \cup [1, \infty)$, hence f(x) always increases.

Option (a) is correct.

52.
$$f(x) = x^2 - 8x + 17$$

$$\Rightarrow f'(x) = 2x - 8 = 0 \Rightarrow x = 4$$

$$f''(x) = 2 > 0$$

x = 4 point of minima

Minimum value of f(x) = 16 - 32 + 17 = 1

Option (c) is correct.

53.
$$f(x) = x^3 - 18x^7 + 96x$$

$$f(x) \ge 0 \ \forall \ x \in [0, 9]$$

 \Rightarrow Minimuliar value of f(x) in [0, 9] is 0.

Option (b) is correct.

55.
$$f(x) = \sin x \cos x = \frac{1}{2} \sin 2x$$

$$\therefore -1 \le \sin 2x \le 1$$
.

$$\therefore -\frac{1}{2} \le \frac{1}{2} \sin 2x \le \frac{1}{2}$$

Hence maximum value of f is $\frac{1}{2}$.

Option (b) is correct.

56.
$$y = -x^3 + 3x^2 + 9x - 27$$

$$y'(x) = -3x^2 + 6x + 9 = slope of the curve = m$$

$$m'(x) = -6x + 6 = 0 \implies x = 1$$

$$m''(x) = -6$$
 and $m''(1) = -6 < 0$

Hence x = 1 is the point where slope is minimum.

Hence minimum value of slope

$$m(1) = -3 + 6 + 9 = 12$$

Option (b) is correct.

57. We have
$$x + y = 8 \Rightarrow y = 8 - x$$

Let
$$f(x) = xy = x(8 - x) = 8x - x^2$$

$$\Rightarrow f'(x) = 8 - 2x = 0 \Rightarrow x = 4$$

$$\Rightarrow y = 4$$

$$f''(x) = -2$$

$$f''(4) = -2 < 0$$

$$\therefore$$
 $f(x)$ is minimum when $x = 4$

$$\therefore$$
 Maximum value of $f(x) = xy = 16$

Option (b) is correct.

59. Given curve $y = 2x^2 - 2x + 7$

∴ Slope of tangent =
$$\frac{dy}{dx} = 4x - 2$$

∴ Slope of normal =
$$-\frac{1}{4x-2}$$

Given
$$-\frac{1}{4x-2} = \frac{1}{6} \Rightarrow -6 = 4x-2$$

$$\Rightarrow 4x = -4 \Rightarrow x = -1$$

When
$$x = -1$$
, $y = 2 + 2 + 7 = 11$

$$\therefore$$
 Required point = $(-1, 11)$

Option (c) is correct.

168 Mathematics—XII: Term—1

62. We are given curve
$$2y^2 = ax^2 + b ... (A)$$

and point
$$(1, -1)$$
 is $2 = a + b$, $a + b = 2$

...(i)

Differentiating (A), w.r.t x we get

$$4y\frac{dy}{dx} = 2ax \Longrightarrow \frac{dy}{dx} = \frac{ax}{2y}$$

$$\left. \therefore \frac{dy}{dx} \right|_{(1,-1)} = -\frac{a}{2} \quad \text{Given } \left. \frac{dy}{dx} \right|_{(1,-1)} = -1$$

$$\Rightarrow a = 2$$

(i)
$$\implies b = 2 - 2 = 0$$

$$\therefore a = 2, b = 0$$

Option (a) is correct.

64.
$$f(x) = x + \sin 2x$$

$$f(0) = 0$$
 and $f(2\pi) = 2\pi$

Hence f(x) has maximum value 2π and minimum value is 0.

Option (a) is correct.

65.
$$R(x) = 5x^3 - 4x^2$$
, $R'(x) = 15x^2 - 8x$

$$R'(x)|_{x=20} = 6000 - 160 = 5840$$

Option (b) is correct.

68.
$$y = 12x - x^2 \Rightarrow \frac{dy}{dx} = 12 - 2x$$

$$\therefore$$
 Slope of tangent = 0

$$\Rightarrow 12 - 2x = 0 \Rightarrow x = 6$$

$$\therefore x = 6 \Rightarrow y = 72 - 36 = 36$$

... Required point is (6, 36).

Option (*c*) is correct.

69.
$$f(x) = -x^2 - 2x + 15$$

$$f'(x) = -2x - 2 = -2(x+1) > 0$$

if
$$x < -1$$
 i.e., in $(-\infty, -1)$

$$f'(x) < 0 \text{ if } x > -1 \text{ i.e., in } (-1, \infty)$$

Hence f(x) is increasing in $(-\infty, -1)$ and decreasing in $(-1, \infty)$

Option (a) is correct.

71.
$$f'(x) = 4x^3 - 62 \times 2x + a$$

$$f'(x) = 4x^3 - 124x + a$$

As function attains maximum at $x = 1 \in [0, 2]$

$$f'(1) = 0$$

$$\Rightarrow$$
 4 - 124 + $a = 0 \Rightarrow a = 120$

Option (*c*) is correct.

